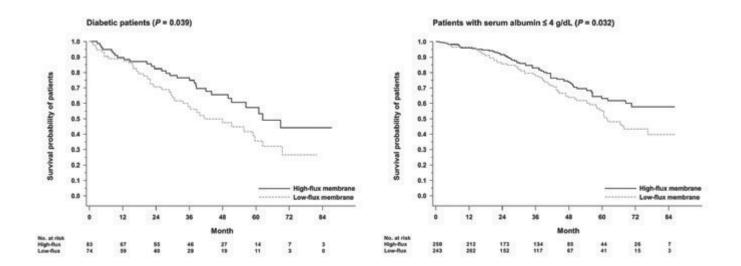
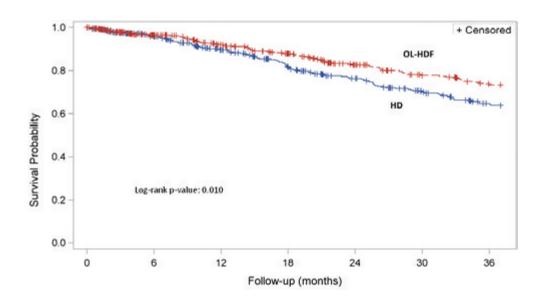


ELISIO™

DIALIZZATORI SINTETICI A FIBRE CAVE IN POLYNEPHRON™



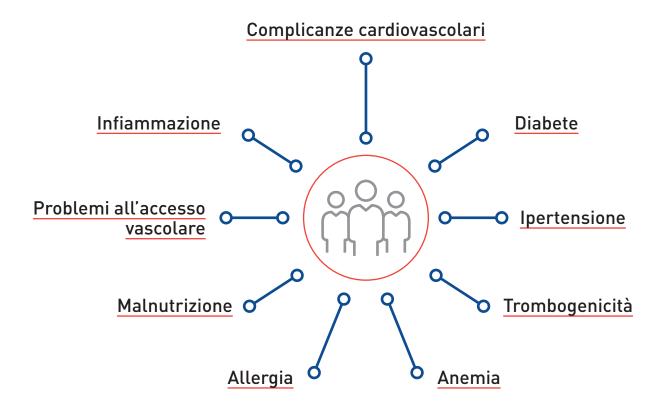
Una delle più comuni complicanze nei pazienti in emodialisi, che è causa di circa il 50% dei decessi, è costituita dalla malattia cardiovascolare. Questo è determinato principalmente dall'accumulo delle tossine uremiche aventi peso molecolare medio e grande.^{1, 2}


L'evoluzione tecnologica delle membrane ha già portato ampi benefici ai pazienti in dialisi. Oggi, le membrane ad alta permeabilità sono largamente apprezzate per i benefici derivanti in termini di sopravvivenza e qualità della vita e rappresentano attualmente lo standard di cura per la maggior parte dei pazienti in dialisi. Tuttavia, i vantaggi delle membrane ad alto flusso sono maggiormente evidenti in gruppi specifici di pazienti come quelli con età dialitica elevata, quelli con livelli di albumina inferiori a 4 g/l e i pazienti diabetici.³

Dializzatori con membrane sintetiche ad alto flusso

Grazie ai più recenti progressi tecnici, le membrane ad alto flusso e l'emodiafiltrazione (HDF) hanno migliorato l'eliminazione di medie e grandi molecole combinando i principi depurativi della diffusione e della convezione. L'HDF online post-diluizione è indicata come la modalità di HDF più efficiente.⁴

Le innovazioni relative alle membrane, alle apparecchiature e alle soluzioni per dialisi hanno reso l'HDF online post-diluizione una tecnica sicura ed efficace.⁵



Le apparecchiature per dialisi moderne effettuano comodamente sia l'emodialisi sia l'emodiafiltrazione

Le membrane ad alta permeabilità hanno evidenziato numerosi vantaggi nella maggior parte dei pazienti. Il loro uso associato all'emodiafiltrazione ad alti volumi soddisfa le esigenze cliniche della maggior parte dei pazienti emodializzati.

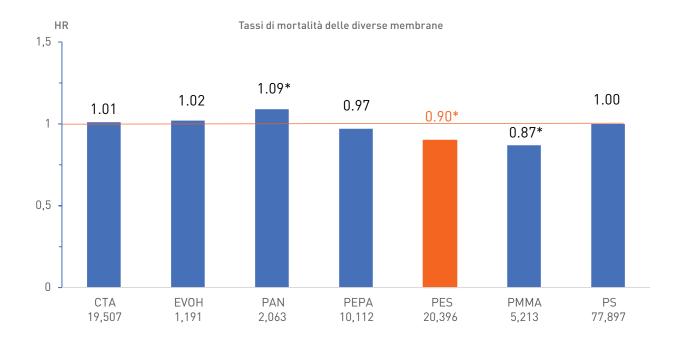
Il paziente in dialisi può essere affetto da una o più comorbilità

Nonostante la disponibilità di numerose evidenze scientifiche che descrivono i benefici di questi trattamenti, la clinica del paziente emodializzato è resa complessa da una o più complicanze.

Un approccio personalizzato rimane l'ideale per soddisfare le esigenze di ogni singolo paziente, oltre a garantire che il paziente riceva il miglior trattamento possibile.

Le membrane sono tutte uguali?

Sopravvivenza


Molte membrane come quelle in polisulfone, polietersulfone, triacetato di cellulosa o acrilonitrile, tra le altre, sono spesso poste tra loro a confronto in termini di prestazioni o di biocompatibilità.

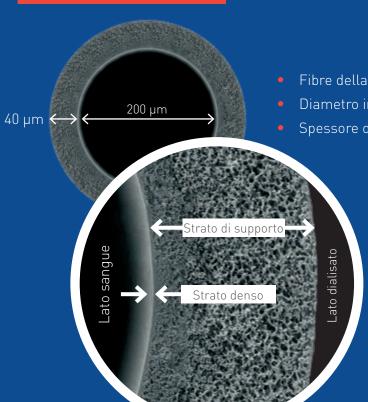
Alcune membrane create senza sostanze interferenti a livello endocrino, riducono la risposta infiammatoria. Le membrane asimmetriche offrono migliori prestazioni in HDF rispetto alle membrane simmetriche. Alcune hanno capacità di ritenzione nei confronti dell'albumina mantenendo tuttavia un'eccellente depurazione delle tossine uremiche di medie dimensioni, risultando vantaggiose nei pazienti anemici.

Con il cambiamento degli ultimi anni da medicina basata sulle evidenze a medicina incentrata sul paziente, diventa sempre più importante identificare i benefici apportati ai pazienti dalle diverse tipologie di membrane. Qual è l'**impatto sulla sopravvivenza dei pazienti** dovuto alla scelta della membrana?

In una coorte sono stati controllati più di 136.000 pazienti per 2 anni. Tali pazienti sono stati studiati in base alla tipologia di membrana da loro utilizzata. L'esito finale consisteva nell'individuare l'associazione tra tipi di membrane dei dializzatori e mortalità per tutte le cause. Il gruppo con membrana in polisulfone è stato definito come quello di riferimento. Lo studio ha rilevato una riduzione del tasso di mortalità **superiore al** 10% nel gruppo che ha ricevuto membrane in polietersulfone (PES) e in polimetilmetacrilato (PMMA).

È stato suggerito che la struttura chimica della membrana può influenzare la sopravvivenza dei pazienti.6

Hazard Ratio della mortalità per tutte le cause tra 7 tipi di membrane dializzanti in 136.676 pazienti sottoposti a routine emodialitica utilizzando la regressione standard del rischio proporzionale di Cox.


La qualità delle membrane in polietersulfone o delle membrane in polimetilmetacrilato ha un impatto significativo sulla sopravvivenza dei pazienti in dialisi.

ELISIO-H

Una membrana in Polynephron™ realizzata con polietersulfone (PES) che soddisfa la maggior parte delle esigenze cliniche del paziente in dialisi:

- Depurazione delle molecole di peso molecolare (PM) medio
- Ritenzione di albumina
- Biocompatibilità
- Non realizzati con BPA
- Bassa infiammazione
- Buona ritenzione di endotossine
- Bassa trombogenicità
- Ridotta perdita di piastrine
- Ecologici

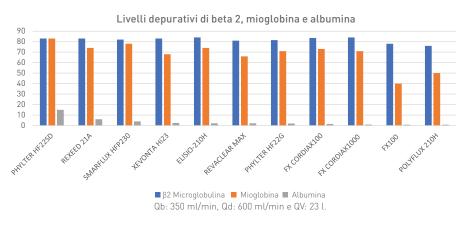
Prestazioni eccellenti

- Fibre della membrana con struttura asimmetrica
- Diametro interno delle fibre di 200 μm
- Spessore delle fibre della membrana di 40 μm

- Lo strato denso migliora l'efficienza diffusiva
- Lo spessore maggiore dello strato di supporto aumenta la resistenza meccanica delle fibre

ELISIO-H consente eccellenti livelli depurativi di β2-microglobulina e mioglobina.

In confronto ai dializzatori sintetici più comuni in commercio, ELISIO-H può essere utilizzato in HD, HF e HDF (pre- e post-diluizione) con perdite minime di albumina in HDF.

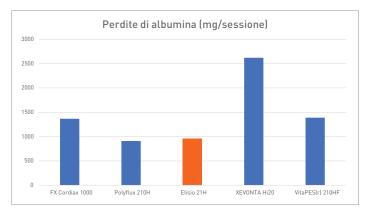


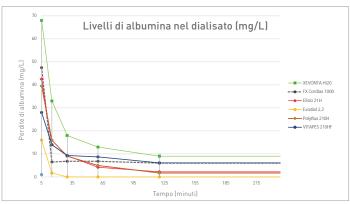
Depurazione delle medie molecole

La beta-2 microglobulina (β 2M) è un marker surrogato delle tossine uremiche medie (medie molecole) ed è il componente principale nell'amiloidosi associata alla dialisi.

Nei pazienti emodializzati, i livelli ematici di $\beta 2M$ sono predittivi di mortalità per tutte le cause, indipendentemente da fattori quali durata della dialisi, diabete o stato nutrizionale del paziente. È quindi importante scegliere una membrana che riduca i livelli di $\beta 2M$ nel sangue preservando sostanze importanti come l'albumina. Uno studio comparativo relativo alle membrane più ampiamente utilizzate ha evidenziato che gli Elisio H offrono prestazioni efficaci in termini sia di riduzione di $\beta 2M$ sia di mioglobina, mantenendo livelli di albumina stabili.⁷

Perdite di albumina


L'albumina sierica è sia un noto marker di valutazione della qualità delle cure nei pazienti in dialisi sia un indicatore dello stato nutrizionale dei pazienti.⁹


Stati di ipoalbuminemia sono comuni nella popolazione dialitica e sono associati alla mortalità per tutte le cause, a quella cardiovascolare e a quella correlata alle infezioni. 10, 11 Oltre alla malnutrizione, anche l'infiammazione cronica contribuisce all'ipoalbuminemia nei pazienti in dialisi. 12

Nei pazienti in dialisi, la concomitanza di acidosi metabolica e di stati infiammatori cronici determina un impatto negativo sulla sintesi di albumina. Pertanto, è importante che i pazienti non subiscano perdite di albumina attraverso la membrana.

La scelta del dializzatore da utilizzare può influenzare la quantità di albumina perduta durante una seduta di emodialisi.

Elisio presenta elevati livelli di depurazione delle medie molecole mantenendo le perdite di albumina a livelli bassi.

Dati relativi a 6 diversi pazienti con prescrizione dialitica simile: durata 4 ore, flusso ematico 400 ml/min, flusso infusione 100 ml/min, flusso dialisato 700 ml/min, temperatura del dialisato 35,5 °C e ultrafiltrazione oraria costante.¹³

ELISIO™ non è realizzato con BPA

La salute dei pazienti migliora grazie all'uso di materiali totalmente privi di BPA per realizzare sia le fibre della membrana, sia l'housing e gli ingressi ematici, sia il sigillante.

Il BPA (bisfenolo A) è un composto organico di sintesi utilizzato nella produzione di alcune resine plastiche ed epossidiche.

È noto che il BPA:2

- Interferisce con il sistema endocrino (ormonale)
- È potenziale causa di effetti avversi sull'equilibrio glicemico, sui sistemi cardiovascolare e immunitario

Il BPA correla con l'aumento della perdita della funzione renale residua, con il diabete e con le patologie cardiovascolari.

$$\mathsf{HO} = \mathsf{CH}_3$$

$$\mathsf{CH}_3$$

$$\mathsf{CH}_3$$

BPA

Fibre della membrana:

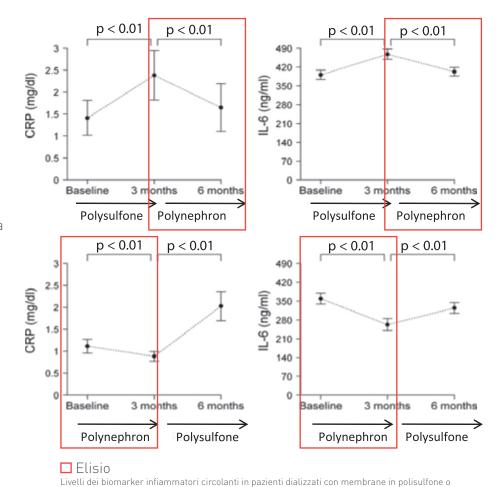
Polynephron™ = polietersulfone (PES) privo di BPA

Housing e ingressi ematici:

L'housing e gli ingressi ematici in polipropilene (PP) degli ELISIO sono privi di BPA

Raccomandazioni SCENIHR:2

Nel febbraio del 2015, lo Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR), un ente che fornisce consulenze alla Commissione Europea, ha raccomandato l'uso di dispositivi medici senza BPA, quando possibile. Tale raccomandazione si applica in particolare ai dispositivi medici a diretto contatto con il sangue del paziente.


Infiammazione

L'infiammazione nei pazienti in dialisi è associata a un rischio di mortalità maggiorato del 30-50% ed è in particolare associata alla mortalità cardiovascolare. 14,15

L'eziologia dell'infiammazione è multifattoriale e ha origine sia dalle comorbilità dei pazienti sia da fattori correlati alla dialisi (come l'incompatibilità di membrana).¹⁵

In generale, il tipo di accesso vascolare, la malnutrizione, lo stress ossidativo e l'ipoalbuminemia possono influenzare lo stato infiammatorio dei pazienti.¹⁶

La concentrazione di BPA nelle urine, che indica l'esposizione al BPA nella

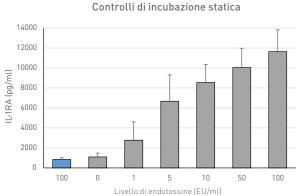
popolazione generale, è collegata allo stress ossidativo e all'infiammazione.¹⁷

Polynephron per 3 mesi.

Allo stesso modo, nel contesto dialitico, l'esposizione al BPA è associata a infiammazione e disturbi cardiovascolari, attraverso l'induzione dello stress ossidativo nelle cellule di roditori e umane poste in coltura ¹⁸⁻²⁰.

La maggior parte dei pazienti in dialisi presenta uno stato infiammatorio più elevato che può ulteriormente essere aggravato dall'uso di membrane incompatibili. Pertanto, tra gli obiettivi della terapia dialitica vi sono quelli di ridurre il più possibile i mediatori infiammatori e di migliorare il profilo di compatibilità delle membrane.

I marker pro-infiammatori come la proteina C-reattiva (PCR) o l'interleuchina 6 (IL-6) sono comunemente indicativi di un'infiammazione elevata.¹⁴ Dai grafici si può dedurre che le concentrazioni di tali molecole infiammatorie mostrano andamenti molto diversi, a seconda del dializzatore utilizzato.


Lo studio in oggetto, che ha confrontato l'effetto del trattamento con i dializzatori in polietersulfone Elisio per 3 mesi, rispetto a ulteriori 3 mesi con un dializzatore in polisulfone (PS), illustra chiaramente una significativa diminuzione dei marker infiammatori IL-6 e CPR con Elisio, evidenziando la sua migliore biocompatibilità.²¹

Ritenzione di endotossine

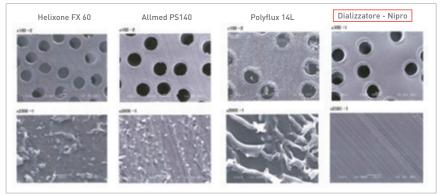
ECCELLENTE RITENZIONE DI ENDOTOSSINE

A causa della natura altamente porosa delle membrane ad alto flusso, vi è il rischio che eventuali sostanze contaminanti del dialisato passino attraverso la membrana. Le caratteristiche chimiche e la struttura asimmetrica della membrana ELISIO-H riducono al minimo il rischio potenziale di contaminazione del sangue. In uno studio in vitro, è stata misurata la produzione dell'antagonista del recettore dell'interleuchina 1 (IL-1RA) nelle cellule del sangue dopo aver iniettato il liquido di dialisi con 100 UE di

lipopolisaccaride (LPS).* Rispetto al sangue stimolato con quantità differenti dello stesso LPS, lo studio conclude che il sangue che esce dal

*(Qb 250 ml/min, Qd 500 ml/min, mantenendo il sangue e il liquido di dialisi riscaldati e fatti ricircolare per 3 ore. n = 5).

dializzatore ELISIO-H, dopo il contatto con liquido di dialisi fortemente contaminato da LPS, non ha indotto alcuna produzione di IL-1RA. Pertanto, guesto indica che con gli ELISIO-H non avviene alcun passaggio di LPS dal lato del dialisato contaminato attraverso la membrana. In base a tali risultati e alla elevata resistenza alla pressione, gli ELISIO-H possono essere considerati sicuri e affidabili nell'HDF ad alti volumi convettivi.

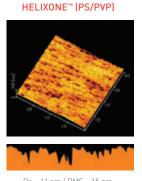

Trombogenicità e attivazione piastrinica

Quando si considera la trombogenicità, è importante osservare ogni punto di contatto tra sangue e dializzatore. L'invasatura, o potting, è il primo punto di contatto.

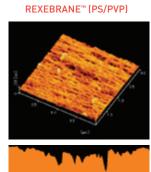
Una superficie liscia del potting è importante per prevenire emolisi e attivazione delle piastrine, e quindi la cascata della coaquiazione.

Come si può vedere, il potting dei dializzatori Elisio è molto liscio rispetto ad altri dializzatori. Tale precisione del taglio è comune a tutti i dializzatori Nipro.

La superficie delle fibre è il secondo punto di contatto. Si tratta della parte attiva della membrana, dove avviene lo scambio di molecole.


Il processo di filatura durante la produzione della fibra ne determina le caratteristiche.

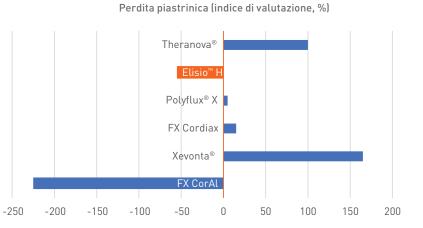
Una bassissima rugosità della superficie interna delle fibre previene l'emolisi e riduce la formazione del protein cake.


ELISIO

Ra = 5.5 nm | RMS = 7.0 nm

SOLACEA (ATA) Ra = 3.8 nm | RMS = 5.0 nm

Ra = 11 nm | RMS = 15 nm



Ra = 13 nm | RMS = 18 nm

^{*}Pyrogen Retention of the ELISIO H Dialyzer in vitro, studio interno, 2008.

La perdita di piastrine durante l'emodialisi è uno dei marker di attivazione piastrinica e di aumento del rischio di trombocitopenia. La maggior parte degli studi ha evidenziato una sostanziale diminuzione delle piastrine nei primi 15-30 minuti di dialisi, con ritorno ai valori basali alla fine del trattamento.²² Tuttavia, le membrane sintetiche hanno evidenziato profili di attivazione piastrinica variabili a seconda del produttore e del tipo di membrana.

del carbonio di oltre il 60% rispetto al policarbonato.*

In questo studio, gli Elisio-H evidenziano un miglior profilo, in termini di perdita di piastrine, rispetto ad altre membrane sintetiche (i valori negativi indicano una minore perdita di piastrine rispetto alla membrana di riferimento).²³

Eco-compatibile

Il concetto di "green management" in Nipro è definito da una gestione delle risorse volta a proteggere gli standard di conservazione ambientale e prevenire il degrado della qualità ambientale.

Sin dal 2010 gli Elisio sono progettati con un housing in polipropilene finalizzato a migliorare la biocompatibilità dei dializzatori. A differenza dei precedenti housing in policarbonato, contenenti BPA nella struttura polimerica, l'assenza di BPA nell'housing in polipropilene degli Elisio ne limita l'esposizione nei pazienti. Inoltre, tale cambiamento del processo produttivo ha determinato un impatto positivo di oltre il 30% sull'impronta energetica. Il peso dei dializzatori è stato ridotto del 32%,

La Sterilizzazione Gamma Dry degli Elisio H è un metodo di sterilizzazione ecologico e privo di residui che consente l'utilizzo dei prodotti subito dopo il rilascio dal fabbricante.

consentendo una riduzione delle emissioni di CO2 durante il trasporto. Il polipropilene riduce l'impronta

Portfolio ELISIO

Superficie

Flusso	0,9 m²	1,1 m²	1,3 m²	1,5 m²	1,7 m²	1,9 m²	2,1 m²	2,5 m²
ELISIO-L (basso flusso)		✓	✓	✓	✓	✓	✓	
ELISIO-M (medio flusso)		✓	✓	✓	✓	✓	✓	
ELISIO-H (alto flusso)	√							

Adatti alle singole necessità dei pazienti

Il portfolio ELISIO si adatta con ampia flessibilità alle necessità dei singoli pazienti, sfruttando un'ampia gamma di superfici che vanno da 0,9 m² a 2,5 m².

Perfetti in tutte le terapie

Tutti i dializzatori ELISIO-H possono essere ugualmente utilizzati nei trattamenti di HD, HDF o HF. In qualsiasi tipo di applicazione, i dializzatori ELISIO depurano sempre in modo efficace, con perdite minime di albumina anche in HDF ¹ evitando limitazioni all'utilizzo delle terapie necessarie nel centro.

Maneggevoli

I dializzatori ELISIO sono facili da usare. Un'offerta ben bilanciata di 20 diversi modelli consente di ridurre al minimo il numero dei diversi tipi di dializzatori necessari presso il centro, e, allo stesso tempo, di mantenere una grande flessibilità terapeutica, con prestazioni eccellenti.

Così, ELISIO aiuta ad aumentare l'efficienza operativa, riduce al minimo i volumi di stoccaggio e riduce il numero di marche di dializzatori da gestire da parte dello staff.

Elisio™-H soddisfa le molteplici e individuali esigenze dei pazienti dializzati con i trattamenti di emodialisi o di emodiafiltrazione ad alti volumi convettivi.

Serie ELISIO™-H

ALTO FLUSSO

PRESTAZIONI

Clearance (ml/min) ⁽⁵⁾	Qb / Qd (ml/min)	09H	11H	13H	15H	17H	19H	21H	25H
	200/500	189	192	195	197	198	199	200	200
	300/500	243	253	263	270	275	280	284	293
Urea	400/500	274	291	311	323	332	343	346	361
	400/800	300	325	344	357	362	370	377	385
	500/800	332	363	388	406	417	427	432	457
	200/500	175	183	191	194	196	197	198	200
	300/500	213	228	240	252	259	268	269	282
Creatinina	400/500	237	252	273	288	299	309	319	337
	400/800	265	294	316	331	342	349	355	375
	500/800	282	320	346	363	383	404	410	426
	200/500	160	164	170	176	179	183	188	193
Fosfati	300/500	195	209	224	233	245	251	256	274
	400/500	220	240	255	271	288	296	304	322
	400/800	235	254	280	298	313	325	330	346
	500/800	254	282	315	333	352	368	373	400
	200/500	114	125	137	148	156	162	165	177
	300/500	128	145	161	173	185	195	198	219
Vitamina B12	400/500	132	153	174	188	202	215	219	242
	400/800	141	171	193	209	227	240	250	270
	500/800	151	178	204	223	242	259	264	291
	200/500	77	82	90	97	105	115	120	149
	300/500	84	86	97	109	117	127	138	166
Inulina	400/500	86	90	100	116	126	137	145	176
	400/800	91	92	106	120	128	140	150	185
	500/800	94	97	112	122	135	148	158	203
	200/500	55	61	70	78	88	94	98	112
	300/500	58	64	78	89	96	101	103	123
Mioglobina	400/500	61	70	82	92	104	110	113	132
	400/800	64	71	84	95	106	111	116	137
	500/800	65	81	90	104	110	117	124	141

Coefficiente di ultrafiltrazione

KUF (ml/h/mmHg) ⁶	53	59	64	67	74	76	82	93

Coefficiente di sieving⁷

Vitamina B12	0,9895
Inulina	0,94
β2-microglobulina	1,02
Mioglobina	0,61
Albumina	0,0017

Specifiche tecniche

Superficie effettiva (m²)			1,1	1,3	1,5	1,7	1,9	2,1	2,5	
Volume di priming (ml)			70	85	95	105	115	130	149	
Lunghezza effettiva (mm)			228	245	259	271	281	290	305	
Diametro inter	no (µm)	m) 200 200 200 200 200 200 2				200	200			
Spessore della membrana (µm)			40	40	40	40	40	40	40	
TMP massima (mmHg)			500	500	500	500	500	500	500	
	Membrana	Polyne	phron™							
Materiale	Housing e ingressi ematici	Polipro	pilene							
	Sigillante	Poliuretano								
Metodo di sterilizzazione			Gamma dry							
Confezione 24 pz./scatola										

^{5.} Condizioni di valutazione in vitro (EN 1283, ISO 8637: 2010): Qf 0 ml/min.

^{6.} KUF (EN 1283, ISO 8637: 2010): sangue bovino. (Hct 32 \pm 2%, Proteine 60 g/l, 37 °C), Qb 300 ml/min.

^{7.} SC (EN 1283, ISO 8637: 2010): Qb 300 ml/min, Qf 60 ml/min.

Dati depurativi ottenuti in Giappone. I dati depurativi possono variare leggermente a seconda della configurazione di prova, del numero di lotto e del sito di produzione.

Serie ELISIO™-M

MEDIO FLUSSO

PRESTAZIONI

Clearance (ml/min) ⁵	Qb / Qd (ml/min)	11M	13M	15M	17M	19M	21M
	200/500	187	190	193	194	195	197
	300/500	240	249	257	265	268	274
Urea	400/500	275	288	300	311	321	331
	400/800	306	320	331	347	352	362
	500/800	331	351	367	383	394	406
	200/500	178	184	188	192	193	195
Creatinina	300/500	221	234	239	248	253	260
	400/500	246	264	272	288	299	305
	400/800	270	290	303	317	328	339
	500/800	300	322	331	349	361	379
	200/500	151	159	167	174	177	181
	300/500	173	189	200	213	221	228
Fosfati	400/500	188	204	217	323	242	252
	400/800	215	232	251	270	284	297
	500/800	227	251	264	286	296	314
	200/500	95	105	114	124	127	135
	300/500	103	114	126	136	143	156
Vitamina B12	400/500	108	122	136	146	157	165
	400/800	112	126	146	157	168	182
	500/800	122	137	155	167	176	191

Coefficiente di ultrafiltrazione

t = t + t + t + t + t + t	4.5	4.5	0.0	00	٥٦	0.7
KUF (ml/h/mmHg) ⁶	15	17	20	22	25	27

Coefficiente di sieving⁷

Vitamina B12	0,880
Inulina	0,440
Mioglobina	< 0,01
Albumina	< 0,01

Specifiche tecniche

Superficie effettiva (m²)				1,5	1,7	1,9	2,1		
Volume di priming (ml)				91	108	115	128		
Lunghezza effettiva (mm)			245	259	271	281	290		
Diametro interno (µm)			200	200	200	200	200		
Spessore della membrana (µm)		40	40	40	40	40	40		
TMP massima (mmHg)		500	500	500	500	500	500		
	Membrana	Polynephron™							
Materiale	Housing e ingressi ematici	Poliprop	ilene						
	Sigillante	Poliuret	ano						
Metodo di sterilizzazione			Gamma dry						
Confezione	24 pz./scatola								

^{5.} Condizioni di valutazione in vitro (EN 1283, ISO 8637: 2010): Qf 0 ml/min.

^{6.} KUF [EN 1283, ISO 8637: 2010]: sangue bovino. (Hct 32 \pm 2%, Proteine 60 g/l, 37 °C), Qb 300 ml/min.

^{7.} SC (EN 1283, ISO 8637: 2010): Qb 300 ml/min, Qf 60 ml/min.

Dati depurativi ottenuti in Giappone. I dati depurativi possono variare leggermente a seconda della configurazione di prova, del numero di lotto e del sito di produzione.

Serie ELISIO™-L

BASSO FLUSSO

PRESTAZIONI

Clearance (ml/min)⁵	Qb / Qd (ml/min)	11L	13L	15L	17L	19L	21L
Urea	200/500	185	189	192	193	194	196
0.00	300/500	237	248	255	263	267	274
	400/500	271	287	298	310	320	327
	400/800	299	318	330	345	351	362
	500/800	327	348	364	380	391	404
Creatinina	200/500	173	180	186	190	193	195
	300/500	205	221	230	242	249	258
	400/500	229	248	262	274	282	295
	400/800	261	283	295	308	316	327
	500/800	289	311	327	347	361	370
Fosfati	200/500	143	151	158	165	170	174
	300/500	162	179	190	201	210	217
	400/500	180	197	210	225	236	247
	400/800	201	223	240	251	267	276
	500/800	213	237	255	275	289	301
Vitamina B12	200/500	76	87	96	106	110	117
	300/500	86	98	107	119	129	138
	400/500	93	106	119	130	140	148
	400/800	101	114	128	141	149	163
	500/800	107	122	134	149	161	174

KUF (ml/h/mmHg) ⁶	11	14	16	18	20	22
1.01 (111711/11111119)	' '	1 4	10	10	20	

Specifiche tecniche

Superficie effettiva (m²)		1,1	1,3	1,5	1,7	1,9	2,1		
Volume di priming (ml)		69	81	91	104	114	127		
Lunghezza effettiva (mm)		228	245	259	271	281	290		
Diametro interno (µm)			200	200	200	200	200		
Spessore della membrana (µm)			40	40	40	40	40		
TMP massima (mmHg)			500	500	500	500	500		
Materiale	Membrana	Polynephron™							
	Housing e ingressi ematici	Poliprop	ilene						
	Sigillante	Poliureta	ano						
Metodo di sterilizzazione	Metodo di sterilizzazione		Gamma dry						
Confezione		24 pz./scatola							

^{5.} Condizioni di valutazione in vitro (EN 1283, ISO 8637: 2010): Qf 0 ml/min.

^{6.} KUF (EN 1283, ISO 8637: 2010): sangue bovino. (Hct 32 \pm 2%, Proteine 60 g/l, 37 °C), Qb 300 ml/min.

Dati depurativi ottenuti in Giappone. I dati depurativi possono variare leggermente a seconda della configurazione di prova, del numero di lotto e del sito di produzione.

Bibliografia

- 1. Vanholder R, Glorieux G, Lameire N. Uraemic toxins and cardiovascular disease. Nephrology, dialysis, transplantation: official publication of the European Dialysis and Transplant Association European Renal Association. 2003;18(3):463-6.
- 2. Parfrey PS, Foley RN. The clinical epidemiology of cardiac disease in chronic renal failure. Journal of the American Society of Nephrology: JASN. 1999;10(7):1606-15.
- 3. Locatelli F, Martin-Malo A, Hannedouche T, Loureiro A, Papadimitriou M, Wizemann V, et al. Effect of Membrane Permeability on Survival of Hemodialysis Patients. Journal of the American Society of Nephrology. 2009;20(3):645-54.
- 4. Masakane I. Selection of dilutional method for on-line HDF, pre- or post-dilution. Blood purification. 2004;22 Suppl 2:49-54.
- 5. Maduell F, Moreso F, Mora-Macià J, Pons M, Ramos R, Carreras J, et al. ESHOL study reanalysis: All-cause mortality considered by competing risks and time-dependent covariates for renal transplantation. Nefrologia: publicacion oficial de la Sociedad Espanola de Nefrologia. 2016;36(2):156-63.
- 6. Abe M, Hamano T, Wada A, Nakai S, Masakane I. High-Performance Membrane Dialyzers and Mortality in Hemodialysis Patients: A 2-Year Cohort Study from the Annual Survey of the Japanese Renal Data Registry. American Journal of Nephrology. 2017;46(1):82-92.
- 7. Potier J, Queffeulou G, Bouet J. Are all dialyzers compatible with the convective volumes suggested for postdilution online hemodiafiltration? The International Journal of Artificial Organs. 2016;39(9):460-70.
- 8. Hulko M, Haug U, Gauss J, Boschetti-de-Fierro A, Beck W, Krause B. Requirements and Pitfalls of Dialyzer Sieving Coefficients Comparisons. Artificial Organs. 2018;42(12):1164-73.
- 9. Friedman AN, Fadem SZ. Reassessment of albumin as a nutritional marker in kidney disease. Journal of the American Society of Nephrology: JASN. 2010;21(2):223-30.
- 10. Fishbane S, Spinowitz B. Update on Anemia in ESRD and Earlier Stages of CKD: Core Curriculum 2018. American Journal of Kidney Diseases: the official journal of the National Kidney Foundation. 2018;71(3):423-35.
- 11. Iimori S, Naito S, Noda Y, Nishida H, Kihira H, Yui N, et al. Anaemia management and mortality risk in newly visiting patients with chronic kidney disease in Japan: The CKD-ROUTE study. Nephrology (Carlton, Vic). 2015;20(9):601-8.
- 12. de Mutsert R, Grootendorst DC, Indemans F, Boeschoten EW, Krediet RT, Dekker FW. Association between serum albumin and mortality in dialysis patients is partly explained by inflammation, and not by malnutrition. Journal of Renal Nutrition: the official journal of the Council on Renal Nutrition of the National Kidney Foundation. 2009;19(2):127-35.
- 13. Santos García A, Macías Carmona N, Vega Martínez A, Abad Estébanez S, Linares Grávalos T, Aragoncillo Sauco I, et al. Removal capacity of different high flux dialyzers during postdilution online hemodiafiltration. Hemodialysis international. International Symposium on Home Hemodialysis. 2019;23(1):50-7.
- 14. Wanner C, Zimmermann J, Schwedler S, Metzger T. Inflammation and cardiovascular risk in dialysis patients. Kidney International Supplement. 2002(80):99-102.
- 15. Jofré R, Rodriguez-Benitez P, López-Gómez JM, Pérez-Garcia R. Inflammatory Syndrome in Patients on Hemodialysis. Journal of the American Society of Nephrology. 2006;17(12 suppl 3):S274-S80.
- 16. Achinger SG, Ayus JC. Inflammation from dialysis, can it be removed? Nephrology, dialysis, transplantation: official publication of the European Dialysis and Transplant Association European Renal Association. 2013;28(4):770-3.
- 17. Bao W, Liu B, Rong S, Dai SY, Trasande L, Lehmler HJ. Association Between Bisphenol A Exposure and Risk of All-Cause and Cause-Specific Mortality in US Adults. JAMA Network Open. 2020;3(8):e2011620.
- 18. Ooe H, Taira T, Iguchi-Ariga SM, Ariga H. Induction of reactive oxygen species by bisphenol A and abrogation of bisphenol A-induced cell injury by DJ-1. Toxicological Sciences: an official journal of the Society of Toxicology. 2005;88(1):114-26.
- 19. Fang C, Ning B, Waqar AB, Niimi M, Li S, Satoh K, et al. Bisphenol A exposure enhances atherosclerosis in WHHL rabbits. PloS one. 2014;9(10):e110977.

- 20. Watkins DJ, Ferguson KK, Anzalota Del Toro LV, Alshawabkeh AN, Cordero JF, Meeker JD. Associations between urinary phenol and paraben concentrations and markers of oxidative stress and inflammation among pregnant women in Puerto Rico. International Journal of Hygiene and Environmental Health. 2015;218(2):212-9.
- 21. Bosch-Panadero E, Mas S, Sanchez-Ospina D, Camarero V, Pérez-Gómez MV, Saez-Calero I, et al. The Choice of Hemodialysis Membrane Affects Bisphenol A Levels in Blood. Journal of the American Society of Nephrology: JASN. 2016;27(5):1566-74.
- 22. Daugirdas JT, Bernardo AA. Hemodialysis effect on platelet count and function and hemodialysis-associated thrombocytopenia. Kidney International. 2012;82(2):147-57.
- 23. Zawada AM, Melchior P, Erlenkötter A, Delinski D, Stauss-Grabo M, Kennedy JP. Polyvinylpyrrolidone in hemodialysis membranes: Impact on platelet loss during hemodialysis. Hemodialysis international. International Symposium on Home Hemodialysis. 2021.

Nipro Renal Care fa parte di Nipro Corporation Japan, un'azienda medicale leader mondiale fondata nel 1954. Con oltre 35.000 dipendenti in tutto il mondo, Nipro fornisce dispositivi medici, farmaceutici e packaging per l'industria farmaceutica.

Nipro Renal Care è un leader del mercato globale specializzato nello sviluppo delle macchine di dialisi, sistemi per il trattamento acqua e possiede inoltre un vasto portafoglio di dispositivi medici monouso; da oltre 6 decenni fornisce sistemi per il trattamento dialitico.

Nell'offrire i suoi prodotti di qualità, Nipro Renal Care è guidata dall'innovazione e dalla sicurezza del paziente i quali ottimizzano tempo, sforzi e costi. Noi affrontiamo le esigenze dei pazienti, del personale sanitario ed amministrativo in modo da ottenere trattamenti sicuri e di elevata qualità senza doversi preoccupare dei costi.

BECAUSE EVERY LIFE DESERVES AFFORDABLE CARE

www.nipro-group.com/en-en/our-company/our-locations

Contattare la filiale locale per maggiori informazioni.

