

PROPOSTE TERAPEUTICHE PERSONALIZZATE E SOSTENIBILI

MEMBRANE IN TRIACETATO SIMMETRICO (CTA) E ASIMMETRICO (ATA™)

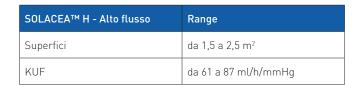
Convenzione Consip Service Dialisi 4 LOTTO 3 - MEMBRANE SPECIALI

Approccio alla personalizzazione del trattamento

	SUREFLUX™ L	SUREFLUX™ E	SUREFLUX™ UX	SOLACEA™ H	
Complicanze cardiovascolari				Infiammazione, Depurazione Medie Molecole ^[9-10]	
Allergia/Prurito	Tollerabilità ^[1-8]	Tollerabilità ^[1-8]	Tollerabilità ^[1-8]	Tollerabilità ^[1-8]	
Diabete			Infiammazione ^[9-10] Infiammazione ^{[9}		
Pazienti Avviati alla Dialisi	Migliore Equilibrio, Tollerabilità ^[11]	Migliore Equilibrio, Tollerabilità ^[11]			
Ipertensione			Infiammazione ^[9-10]	Infiammazione ^[9-10]	
Trombogenicità				Dialisi Senza Eparina ^[13-16]	
Anemia				Depurazione Medie Molecole ^[9-10]	
Pazienti con Funzione Renale Residua	BPA-Free ^[17]	BPA-Free ^[17]	BPA-Free ^[17]	BPA-Free ^[17]	
Obesità	BPA-Free ^[17]	BPA-Free ^[17]	Infiammazione ^[9-10] BPA-Free ^[17]	Infiammazione ^[9-10] BPA-Free ^[17]	
Malnutrizione		Albuminemia ^[18]	Albuminemia ^[18]	Albuminemia ^[18]	
Problemi all'Accesso Vascolare				Depurazione Medie Molecole ^[9-10]	
Infiammazione				Tollerabilità ^[1-8] Depurazione Medie Molecole ^[9-10] Albuminemia ^[18]	
Pediatria	BPA-Free ^[17,19-21]	BPA-Free ^[17,19-21]			
Sarcopenia	Tollerabilità ^[1-8]	Tollerabilità ^[1-8]		Infiammazione, Depurazione Medie Molecole ^[9-10]	
AKI	SLED ^[22-23]	SLED ^[22-23]	SLED ^[22-23]	Infiammazione ^[9-10]	

Riferimenti bibliografici

- Alvarez-de Lara MA et al. Hypersensitivity reactions to synthetic haemodialysis membranes - an emerging issue? Nefrologia 2014;34(6):698-702
- Boer WH et al. Acute reactions to polysulfone/polyethersulfone dialysers: literature review and management. The Netherlands Journal of Medicine 2017,75,1:4-13
- Boer WH et al. Acute reactions to polysulfone/polyethersulfone dialysers: literature review and management. The Netherlands Journal of Medicine 2017,75,1:4-13
- Esteras R et al. Incidence of Hypersensitivity Reactions During Hemodialysis Kisney Blood Press Res 2018;43(5):1472-1478
- Martín-Navarro JA et al. Hypersensitivity to Synthetic Hemodialysis Membranes. Nefrologia 2014;34(6):807-8
- 6. Ikeda H et al. FB-150FH and Pruritus. Kidney and Dialysis 2000. Suppl. 49. High Performance mambrane 00:149-153
- Senda M et al. FB-150FH and Itching Sensation /Second report). Kidney and Dialysis 2001, Suppl.51, High Performance Membrane 01:143-146
- Uemura A et al. Improvement of Itching by FB-150FH Kidney and Dialysis 2011, Suppl. 51, High Performance Membrane 01:135-138
- Chang CH et al. Elevation of Interleukin-18 Correlates With Cardiovascular, Cerebrovascular, and Peripheral Vascular Events: A Cohort Study of Hemodialysis Patients. Medicine 2015. 94[42]:e1836
- Foster MC et al. Protein and 82-Microglobulin as Predictors of ESRD, Mortality, and cardiovascular Disease in Adults With CKD in the Chronic Renal Insufficiency Coort (CRIC) Study. Am J Kideny Dis 2016;68(1):68-76
- 11. Martin-Navarro J et al. Reactions to Synthetic Membranes Dialyzers: Is there an Increase in Incidence? Kidney Blood Press Res 2019;44:907-914
- Vernon K et al. Dyalizers Designed to Increase Internal Filtration Do Not Result in Signigicantly Increased Platelet Activation and Thrombin Generation Nephron Clin Pract 2011:117:403-408.


- F. Vanommeslaeghe et al. A randomized cross-over study with objective quantification of the performance of an asymmetric triacetate and a polysulfone dialysis membrane using different anticoaugaltion strategies. Chronic Kidney Journal 2019,1-9.
- Maijers B ey al. Heparin-free dialysis: A phase II pilot study using Asymmetric cellulose Triacetate (ATA) dialysers. ERA-EDTA 2020, Poster.
- Vandenbosch I et al. Strategies for asymmetrical triacetate dialyser heparin-free effective haemodialysis: the SAFE study. Clinical Kidney Journal, 2020,1-7.
- 16. Vanommeslaeghe F et al. How biocompatible harmodialysers can conquer the need for systemic anticoagulation even in post-dilution haemodiafiltration: a cross-over study. Clinical Kidney Journal 2020, 1-8.
- Quiroga B. Strategies to Protect Dialysis Patients against Bisphenol A. Biomolecules. 2021 Gomez M, et al. Blood Purif. 2021.
- 18. Maduell F et al. A new generation of cellulose triacetate suitable for online Haemodiafiltration. Nefroogia 2018;38[2]:161-168
- Benz MR SF. Technical Aspects of Hemodialysis in Children. Pediatric Dialysis Springer. 2012
- 20. Chesnaye NC et al. Survival in children requiring chronic renal replacement therapy. Pediatr Nephrol 2018;33[4]:585-594
- 21. Fischbach M et al. Hemodialysis in children: general practical guidelines. Pediatr Nephrol 2005;20(8):1054-66
- 22. Schwenger V et al. Sustained low efficiency dialysis using a single-pass batch system in acute kidney injury a randomized interventional trail: the Renal Replacement Therapy Study in INtensive Care Unit Patients. Crit care 2012.27;16(4):R140
- 23. Di Mario F et al. Sustained low efficiency dialysis (sled) with standard hemodialysis machine and citrate as circuit anticoagulant in critically ill patients with acute didney injury. Nephrology Dialysis Transplantation 2020. doi:10.1093/ndt/gfaa142liiii382

Dializzatori che rendono possibile la personalizzazione

FILTRI 'SPECIALI' PER DIALISI EXTRACORPOREA

 Filtri in Triacetato di cellulosa asimmetrico (ATA™)

SUB-LOTTO 3.1

 Filtri in Triacetato di cellulosa simmetrico (CTA)

SUB-LOTTO 3.3

SUREFLUX™ L - Basso flusso	Range
Superfici	da 0,3 a 2,1 m²
KUF	da 3 a 22 ml/h/mmHg
SUREFLUX™ E - Medio flusso	Range
Superfici	da 0,5 a 2,1 m²
KUF	da 9 a 25 ml/h/mmHg
SUREFLUX™ UX - Alto flusso	Range
Superfici	da 1,1 a 2,5 m²
KUF	da 25 a 53 ml/h/mmHg

SOLACEA™ Triacetato di cellulosa asimmetrico (ATA™)

- Membrana a ridottissima trombogenicità
- Adatto a varie tipologie di trattamenti emodialitici
- Elevate prestazioni in HDF online ad alti volumi convettivi

SOLACEA™

Zero eparina

"La membrana SOLACEA™ si comporta molto bene anche nelle condizioni in cui la terapia anticoagulante sistemica è impraticabile e che quindi non consentirebbe di applicare alcun anticoagulante."

F. Vanommeslaeghe et al., 2020, CKJ.28

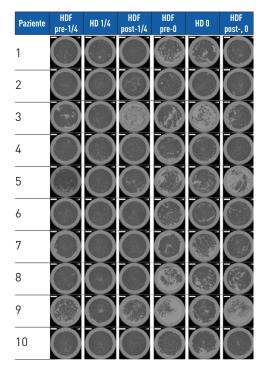
Impostazioni dello studio

- Trattamenti dialitici: HD o HDF in pre- o HDF in post-diluizione
- Qb: 300 ml/min
 Qd: 500 ml/min

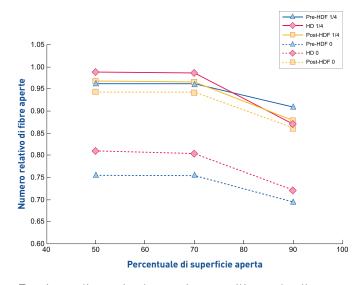
QUF: impostato secondo la necessità del

paziente

Sottogruppi di trattamento

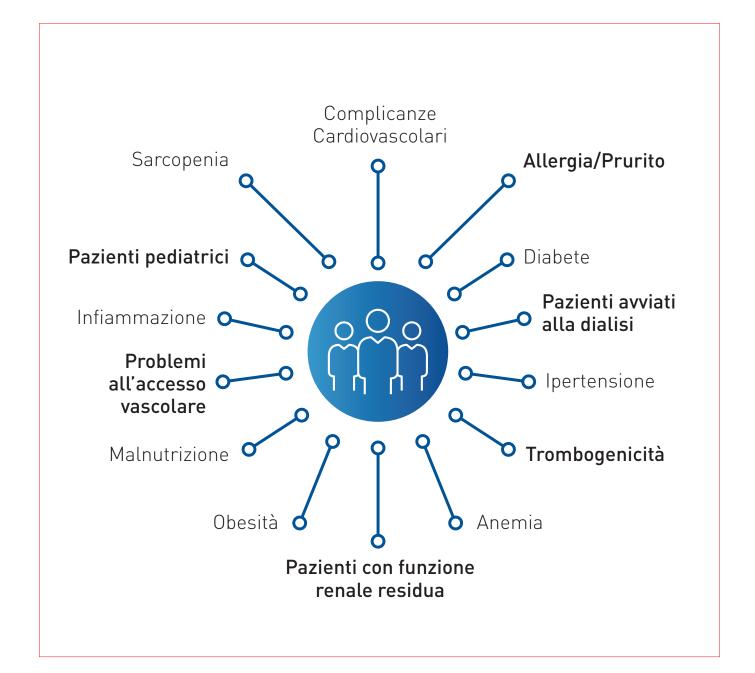

Dializzatore valutato: SOLACEA™ in Triacetato Asimmetrico		
1/4 dose di eparina	HDF pre-, HD, HDF post-	
Assenza di eparina	HDF pre-, HD, HDF post-	

^{*} Dosaggio normale di LMWH: Tinazaparin 3500 UI (n = 5) e Tinazaparin 4500 UI (n = 5)

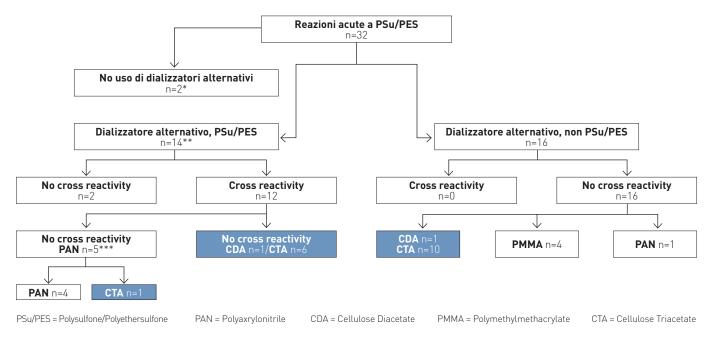


Percentuale di successo di trattamenti senza eparina

Risultati relativi alla percentuale di fibre pervie alla fine di ciascuna sessione di dialisi, rilevata mediante scansione con micro-TAC del dializzatore

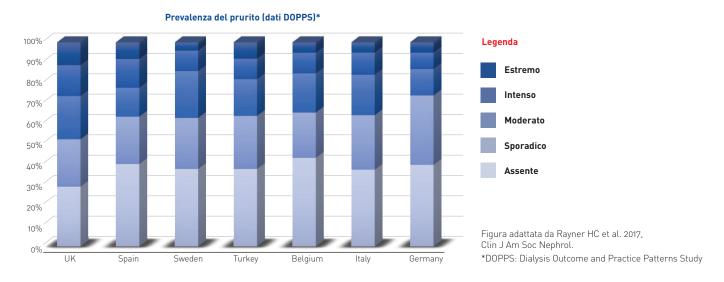


Frazione di pervie determinata utilizzando diverse definizioni di "fibre aperta": 50% di superficie pervia, 70% di superficie pervia e 90% di superficie pervia, rispettivamente.


SUREFLUX™ Triacetato di cellulosa simmetrico (CTA)

Un'ampia versatilità nei trattamenti HD:

- La migliore alternativa per i pazienti allergici
- Alleviano le reazioni da ipersensibilità
- Ideali per pazienti pediatrici
- Uso sicuro ed efficace nella SLED
- Ben tollerati ed efficienti nei pazienti avviati alla dialisi


SUREFLUX™ allevia le reazioni da ipersensibilità

Il 66% dei pazienti risolve le reazioni da ipersensibilità con l'uso di membrane in triacetato di cellulosa

Nel follow-up di **32 pazienti con reazioni allergiche alla membrana in polisulfone**, l'uso successivo di quelle non polisulfoniche, in **19 pazienti** per oltre 2/3 in triacetato di cellulosa, ha determinato l'eliminazione definitiva delle reazioni, mentre l'uso di altri polisulfoni non è risultato efficace.

SUREFLUX™ riduce il prurito

Il 78% dei pazienti con prurito trae sollievo dal passaggio ad altri tipi di dializzatori

9 pazienti sottoposti a emodialisi trattati con membrane dializzanti in polisulfone o polimetilmetacrilato (PMMA) presentavano prurito persistente.

Dopo il passaggio a dializzatori in triacetato di cellulosa, il prurito è migliorato in 7 pazienti su 8.

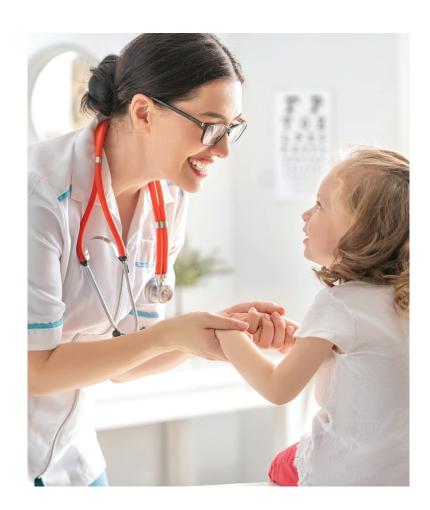
SUREFLUXTM

Uso sicuro ed efficace nella SLED

La gestione del danno renale acuto nei pazienti critici è alquanto complessa per via della presenza di diverse gravi comorbilità in tali pazienti. La dialisi prolungata a bassa efficienza (SLED) è sempre più utilizzata in tali pazienti ed è correlata a livelli di sopravvivenza a 90 giorni paragonabili a quelli della emofiltrazione veno-venosa continua standard.

A causa di un prolungamento dei tempi di trattamento, una delle maggiori problematiche legate alla tecnica SLED è quella di evitare la coagulazione nel dializzatore, per cui la scelta di un

dializzatore biocompatibile diventa fondamentale. Fiaccadori et al. hanno riportato il successo del trattamento con SUREFLUX™ in un totale di 41 sessioni di SLED su 12 pazienti, utilizzando l'apparecchiatura standard per HD Surdial™-X e un protocollo semplificato di anticoagulazione regionale con citrato raggiungendo dosi di dialisi in linea con quelle prescritte.

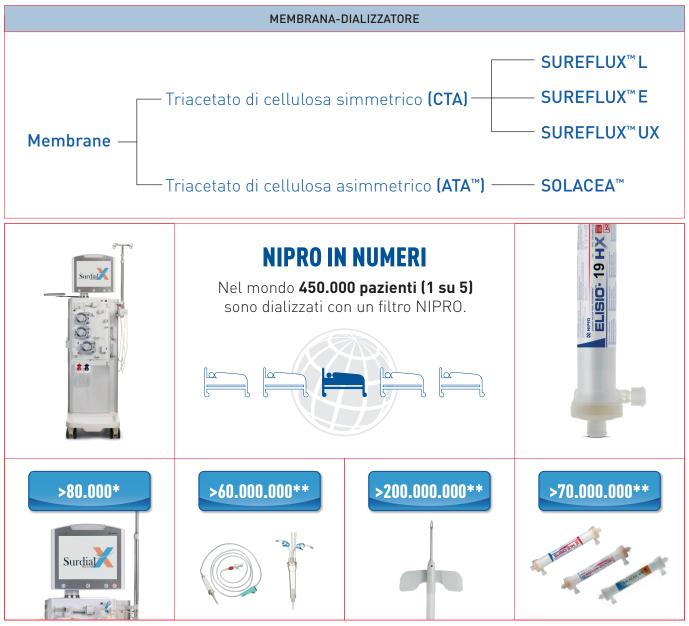

Questo studio è la dimostrazione **dell'uso sicuro ed efficace dei SUREFLUX™ nei trattamenti SLED**, senza significativi problemi di coagulazione.

Dializzatori pediatrici

La prevalenza della dialisi nei bambini è in costante aumento poiché offre una soluzione a sostegno della vita. In questo gruppo vulnerabile di pazienti, la conservazione della funzione renale residua, la crescita naturale e lo stato di benessere sono estremamente importanti. Alcuni studi hanno suggerito che la funzione renale residua aumenta la sopravvivenza dei neonati e ha effetti positivi sulla loro crescita e sulla loro nutrizione.

Attualmente, la maggior parte dei pazienti pediatrici è trattata con membrane sintetiche con housing in policarbonato fatto con BPA. Il rilascio di BPA durante il trattamento pediatrico può ridurre la funzione renale residua e aumentare la propensione a reazioni allergiche. Inoltre, il volume ematico extracorporeo comprensivo del dializzatore dovrebbe essere ridotto al minimo possibile per evitare rischi di ipotensione e di sovraccarico di liquidi.

SUREFLUX[™] offre la migliore soluzione per bambini in dialisi grazie a superfici dedicate.



L'approccio centrato sul paziente

La dialisi è il trattamento salvavita dei pazienti con insufficienza renale cronica, malattia che riguarda più del 10% della popolazione mondiale^[1]. La presenza di un elevato grado di morbilità richiede diversi approcci terapeutici, pertanto è necessario offrire trattamenti personalizzati atti a soddisfare le specifiche esigenze terapeutiche di tali pazienti. Il trattamento dei pazienti avviati alla dialisi, di quelli con un accesso vascolare scarsamente performante, di quelli allergici o ipersensibili, può spesso essere oneroso per via di condizioni di instabilità e di fragilità, oltre che per la scarsa tollerabilità all'eliminazione di fluidi e tossine in eccesso, ed altresì condizionato da vincoli operativi. I trattamenti HDF on-line, talvolta irrealizzabili, difficilmente consentono volumi convettivi elevati. L'ipersensibilità ai materiali estranei del circuito extracorporeo (membrane, filtri, plastificanti), può causare reazioni immediate che talvolta espongono seriamente i pazienti a rischi importanti per la loro stessa vita. Serve pertanto un approccio terapeutico personalizzato e di qualità.

[1] Coresh J. Update on the Burden of CKD. J Am Soc Nephrol. 2017; 28(4): 1020–1022

